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4101. (a) Differentiating,

f(x) = sin x + x

=⇒ f ′(x) = cos x + 1
=⇒ f ′′(x) = − sin x.

The second derivative is zero and changes sign
at the roots of sin x, which are x = nπ for
n ∈ Z. At these points, the first derivative is
alternately 0 and 2. So, half of the points of
inflection have gradient 2, and the other half
are stationary. There are infinitely many of
each.

(b) The curve is the superposition of the linear
y = x and the sinusoidal y = sin x. Part (a)
tells us that, at x = nπ, the gradient is 0. And,
since the range of cos x is [−1, 1], the range of
f ′ is [0, 2]. Putting these facts together, the
curve is

x

y

(π, π)

(3π, 3π)

(5π, 5π)

4102. The planes are inclined at arctan 1 = 45° and
arctan

(
2 −

√
3
)

= 15°. The cylinder is smooth, so
the contact forces are perpendicular to the planes.
The force diagram and triangle of forces are

W

R2

R1

45°75°
W

R2
45°

15°
R1

Using the sine rule,

R1 = sin 45°
sin 120°W ≡

√
6

3 W,

R2 = sin 15°
sin 120°W ≡ 3

√
2 −

√
6

6 W.

4103. We integrate by parts. Let u = x and dv
dx = f2(x),

so that du
dx = 1 and v = f1(x). The integration by

parts formula gives∫
x f2(x) dx

= x f1(x) −
∫

f1(x) dx

= x f1(x) − f0(x) + c.

4104. Differentiating,

f(x) = a1x + a2x3 + ... + akx2k+1

=⇒ f ′(x) = a1 + 3a2x2 + ... + (2k + 1)akx2k

=⇒ f ′′(x) = 6a2x + ... + (2k + 1)(2k)akx2k−1

= x
(
6a2 + ... + (2k + 1)(2k)akx2k−2)

.

There is a factor of x, so f ′′(0) = 0. Furthermore,
since a2 ̸= 0, this factor is not repeated. So, f ′′(x)
is zero and changes sign at x = 0. And f(0) = 0, so
y = f(x) has a point of inflection at the origin.

4105. For a triangle to exist, each side must be shorter
than the sum of the other two. Assume, without
loss of generality, that the common ratio r ≥ 1.
We need r2 < 1 + r. The boundary equation is
r2 − r − 1 = 0, which has solution r = 1

2
(
1 ±

√
5
)
.

Only the greater of these satisfies r ≥ 1. So, there
are such triangles if

1 ≤ r < 1
2
(
1 +

√
5
)
.

Alternative Method

For a triangle to exist, each side must be shorter
than the sum of the other two.
• Firstly, assume that r ≥ 1. We need r2 < 1 + r.

The boundary equation is r2 − r − 1 = 0, which
has solution r = 1

2
(
1±

√
5
)
. The greater of these

satisfies r ≥ 1. So, there are such triangles if

1 ≤ r < 1
2
(
1 +

√
5
)
.

• Secondly, 0 < r < 1. We require 1 < r + r2.
This has boundary equation r2 + r − 1 = 0,
which has solution r = 1

2
(
−1 ±

√
5
)
. Only the

greater of these is positive. So, there are such
triangles if

1
2
(
1 +

√
5
)

< r < 1.

The common ratio cannot be zero/negative, as this
would produce zero/negative side lengths. Putting
the two options above together:

r ∈
(

1
2
(
−1 +

√
5
)
, 1

2
(
1 +

√
5
))

.

Nota Bene
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Any triangle with lengths in gp can be described
with a common ratio r ≥ 1, as in the first solution
above. The lower bound in the second solution,
which doesn’t seem to appear in the first, in fact
does. The two bounds in the second solution are
reciprocals of each other, representing the fact that
a decreasing gp of side lengths {a, ar, ar2} with
r < 1 can be reinterpreted, in reverse order, as
an increasing gp of side lengths {ar2, ar, a}. The
common ratio of this sequence is r−1.

4106. All of the points of the given graph have y ≥ 0.
So, they all feature in the new graph. Replacing y

with |y| also allows symmetrical negative values of
y. So, the graph of |y| =

∣∣x4 − x2
∣∣ is

x

y

4107. Let u = ex + 3. Then du = ex dx. So,

dx = 1
ex

du = 1
u − 3 du.

Also, ex + 2 = u − 1. Enacting the substitution,∫
ex + 2
ex + 3 dx

=
∫

u − 1
u(u − 3) du.

Writing the integrand in partial fractions, this is

1
3

∫ 1
u

+ 2
u − 3 du

= 1
3 (ln |u| + 2 ln |u − 3|) + c.

Since u = ex + 3 and u − 3 = ex are both positive,
we can get rid of the mod signs, leaving

1
3 (ln(ex + 3) + 2 ln(ex)) + c

≡ 1
3 ln(ex + 3) + 2

3 x + c.

4108. (a) By the chain rule, the derivative is

dy

dx
= ex − e−x.

So, at a generic point (p, ep + e−p), the equa-
tion of the tangent is

y − (ep + e−p) = (ep − e−p)(x − p).

If this passes through the origin, then

−ep − e−p = (ep − e−p)(−p)
=⇒ (p − 1)ep − (p + 1)e−p = 0
=⇒ e2p − p+1

p−1 = 0

=⇒ e2p − p−1+2
p−1 = 0

=⇒ e2p − 2
p−1 − 1 = 0.

(b) The equation is not analytically solvable. So,
we solve numerically. The N-R iteration is

xn+1 = xn − e2xn − 2(xn − 1)−1 − 1
2e2xn + 2(xn − 1)−2 .

Running this with x0 = 2, we get x1 = 1.5359...,
and then xn → 1.1996.... So, to 3sf, p = 1.20.

4109. Using a double-angle formula, the curve may be
expressed as y = 1

2 (1 − cos 2x). This has period π,
and is tangent to the x axis at x = 0:

x

y

π

The area of each region enclosed is∫ π

0
sin2 x dx

=
∫ π

0

1
2 (1 − cos 2x) dx

=
[

1
2 x − 1

4 sin 2x
]π

0

= π
2 , as required.

4110. The graph y = f(x) is symmetrical in the line
x = k

2 . So, the curve must be stationary at x = k
2 :

ln k
2 + ln

(
k − k

2
)

= ln 25
=⇒ 2 ln k

2 = 2 ln 5
=⇒ k = 10.

Alternative Method

The derivative is

f ′(x) = 1
x

− 1
k − x

.

Setting this to zero for sps,
1
x − 1

k−x = 0
=⇒ k − x = x

=⇒ x = k
2 .

The curve is stationary at x = k
2 , so

ln k
2 + ln

(
k − k

2
)

= ln 25
=⇒ 2 ln k

2 = 2 ln 5
=⇒ k = 10.
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4111. Both curves are symmetrical in x = 0. Hence, the
only way of getting an odd number of intersections
is if one of these is at x = 0. So, we require a = 1.
The scenario is

Solving for intersections,

x2 +
(
1 − bx2)2 = 1

=⇒ b2x4 + (1 − 2b)x2 = 0
=⇒ x2(b2x2 + 1 − 2b) = 0

=⇒ x = 0 or x = ±
√

2b − 1
b2 .

For three distinct points of intersection, the input
to the square root (radicand) must be positive:

2b − 1
b2 > 0

=⇒ 2b − 1 > 0
=⇒ b > 1

2 .

So, a = 1 and b ∈
( 1

2 , ∞
)
.

4112. Since the gp is increasing and the common ratio
r > 1, all terms must be positive. We can express
them as a, ar, ar2, ar3, ar4.

• Consider b + d − 2c. This is

ar + ar3 − 2ar2

≡ ar(r − 1)2.

All three factors a, r, (r − 1)2 are positive. So,
b + d > 2c.

• Consider a + e − (b + d). This is

a + ar4 − ar − ar3

≡ a(r − 1)2(r2 + r + 1).

The quadratic factor has ∆ = −3 < 0, so it is
always positive. Therefore, a + e > b + d.

Combining these, a + e > b + d > 2c. qed.

4113. For intersections
√

x − mx = 0, which gives x = 0
or x = m−2. Setting up the relevant integral,∫ m−2

0

√
x − mx dx

≡
[

2
3 x

3
2 − 1

2 mx2
]m−2

0

≡ 2
3
(
m−2) 3

2 − 1
2 m

(
m−2)2

≡ 2
3 m−3 − 1

2 m−3

≡ 1
6 m−3.

Equating this to 36 gives m = 1
6 .

4114. Sampling without replacement, we multiply the
probability of aabb in that order by the number
of orders of aabb.

p = 4C2 × 10
100 × 9

99 × 90
98 × 89

97 = 0.0460 (3sf).

4115. (a) Linear transformations such as this preserve
features such as points of inflection. The new
coordinates are (a, 2b + 3).

(b) Nonlinear transformation such as this don’t,
in general, preserve features such as points of
inflection. Consider y = h(x) = x3, which has
a point of inflection at the origin. The graph
y = (h(x))2 = x6 is a positive sextic with a
local minimum at the origin.

(c) This is a linear transformation. The output is
maintained as y = b. The input value p which
produces this must satisfy 2p + 3 = a. So, the
new coordinates of the point of inflection are( 1

2 (a − 3), b
)
.

4116. Without loss of generality, let the circle have radius
1, and let the sides of the rectangle be parallel to
x and y axes. The vertex in the positive quadrant
has coordinates (cos θ, sin θ).

(cos θ, sin θ)

x

y

The area of the rectangle is given by

A = 4 cos θ sin θ ≡ 2 sin 2θ.

This is maximised at 2θ = 90°, so θ = 45°. This
value produces a square.

Alternative Method

Set the problem up as above. The rectangles at θ

and 90°−θ are reflections of one another in the line
y = x, i.e. in θ = 45°. Hence, they have the same
area. Since θ = 0° and θ = 90° are minima of area,
this symmetry dictates that θ = 45° is a maximum
of area. This value produces a square.

4117. We integrate by parts. Let u = ln x and dv
dx = x2.

This gives du
dx = 1

x and v = 1
3 x3. The integration

by parts formula tells us that∫
x2 ln x dx

= 1
3 x3 ln x −

∫
1
x · 1

3 x3 dx

≡ 1
3 x3 ln x −

∫
1
3 x2 dx

= 1
3 x3 ln x − 1

9 x3 + c.
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4118. On the unit circle, x2 + y2 = 1. In the positive
quadrant, where x, y ≥ 0, we can rewrite this as
x =

√
1 − y2 and y =

√
1 − x2. Substituting these

into the lhs of the relationship,

x
√

1 − y2 + y
√

1 − x2

= x · x + y · y

≡ x2 + y2

= 1.

So, points on the circle in the positive quadrant
satisfy the relationship. In the negative quadrant,
however, where both x and y are negative, then
both terms on the lhs x

√
1 − y2 +y

√
1 − x2 must

be negative. This precludes their sum equalling 1.
Hence, the locus consists of part, but not all, of
the unit circle.

4119. Both sides have a factor of (x 1
2 + 3):

x(x 1
2 + 3) = x

1
2 + 3.

Since x
1
2 is positive, this factor cannot be zero,

so we can divide through by it. This leaves the
solution x = 1.

Alternative Method

Let u = x
1
2 . A polynomial solver gives

u3 + 3u2 − u − 3 = 0
=⇒ u = −3, ±1.

The negative u values are not in the range of the
square root function, so they produce no x values.
Only u = 1 does, giving x = 1.

4120. (a) Using the quotient rule to look for sps,

−2x(1 + x2) − (1 − x2)2x

(1 + x2)2 = 0 =⇒ x = 0.

So, there is one stationary point at (0, 1).
(b) Dividing top and bottom by x2, the curve is

y =
1

x2 − 1
1

x2 + 1
.

As x → ±∞, the inlaid fractions tend to zero,
so y → −1.

(c) The line y = −1 is an asymptote. The curve
has no vertical asymptotes, as 1 + x2 > 0 for
all x. The x intercepts are ±1. Putting this
together, the graph is

x

y

−1

4121. (a) We notate the probability density function of
the normal distribution as

φ : z 7−→ 1√
2π

e− z2
2 .

The relevant values are
z φ(z)
0 0.39894

0.25 0.38667
0.5 0.35207
0.75 0.30114

1 0.24197.
The trapezium rule formula, with strip width
h = 0.25, gives

P(0 < Z < 1)
≈ 1

8

(
0.39894 + 2(0.38667 + 0.35207

+ 0.30114) + 0.24197
)

= 0.3401 (4sf).

(b) Using a calculator,

P(0 < Z < 1) = 0.3413 (4sf).

The trapezium rule underestimates this:

0.3401 < 0.3413.

The standard normal bell curve has points of
inflection at z = ±1, and is concave between
them. Hence, the chords for the trapezia all lie
below the curve, giving an underestimate for
the area/probability. The error is the darker
shading below.

φ(z)

4122. (a) The force diagram is

θ

R1

W

R2
F

The sloped distance from the ground to the
top of the wall is l cosec θ. Taking moments
around the top of the wall,

R1l cosec θ cos θ = W (l cosec θ − l) cos θ

=⇒ R1 cosec θ = W (cosec θ − 1)
=⇒ R1 = W (1 − sin θ).
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(b) Taking moments around the base of the ladder,

R2l cosec θ = Wl cos θ

=⇒ R2 = W sin θ cos θ

≡ 1
2 W sin 2θ.

The range of sin 2θ is [−1, 1], so the reaction
at the wall satisfies R2 ≤ 1

2 W , as required.

4123. We proceed graphically. Differentiating,

y = xex

=⇒ dy

dx
= (x + 1)ex

=⇒ d2y

dx2 = (x + 2)ex.

So, there is a stationary point at x = −1, which is
a local minimum. Also, the curve passes through
the origin. As x → −∞, y → 0 and as x → ∞,
y → ∞. Hence, the curve is as follows:

x

y

(−1, −1/e)

(a) At p = −1, the normal is parallel to the y axis,
and does not re-intersect the curve.

(b) For p < −1, the gradient of the normal is +ve.
Such a positive straight line, no matter how
steep its gradient, must re-intersect the curve
somewhere in the positive quadrant.

Nota Bene

If we want, we can show this last fact explicitly, by
considering a normal of the form y = ax+b, where
a, b > 0. At x = 0, the y difference is positive:

ax + b − xex > 0.

The derivative of the y difference is a − (x + 1)ex.
As x → ∞, this rate tends to negative infinity,
meaning that the curves are getting closer together
increasingly quickly. So, eventually, they must
cross, as required.

4124. The area of △ABC may be calculated in two ways:
1
2 cl = 1

2 ab

=⇒ c2l2 = a2b2

=⇒ c2

a2b2 = 1
l2

=⇒ a2 + b2

a2b2 = 1
l2

=⇒ 1
a2 + 1

b2 = 1
l2 , as required.

Alternative Method

By the standard Pythagorean theorem,

|AD|2 = b2 − l2, and |BD|2 = a2 − l2.

We also know that |AB|+ |BD| = c. Squaring this
and using Pythagoras again,

|AD|2 + 2|AD||BD| + |BD|2 = a2 + b2.

Substituting in the earlier results,

b2 − l2 + 2
√

(b2 − l2)(a2 − l2) + a2 − l2 = a2 + b2.

This simplifies to√
(a2 − l2)(b2 − l2) = l2

=⇒ (a2 − l2)(b2 − l2) = l4

=⇒ a2b2 − l2a2 − l2b2 + l4 = l4

=⇒ a2b2 = (a2 + b2)l2

=⇒ 1
l2 = a2 + b2

a2b2 = 1
a2 + 1

b2 .

Quod erat demonstrandum.

4125. Firstly, we write∫ ∞

1

ln x + 1
x2 dx = lim

k→∞

∫ k

1

ln x + 1
x2 dx.

We integrate by parts. Let u = ln x + 1 and
v′ = 1/x2. Then u′ = 1/x and v = −1/x. So∫ ln x + 1

x2 dx

= − ln x + 1
x

+
∫ 1

x2 dx

= − ln x + 1
x

− 1
x

+ c.

Hence, the original limit is

lim
k→∞

[
− ln x + 1

x
− 1

x

]k

1

= lim
k→∞

(
− ln k + 1

k
− 1

k
− (−1 − 1)

)
= 2 − lim

k→∞

ln k

k
+ 2

k

= 2, as required.
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4126. We solve by separation of variables:

dy

dx
= x2 − 1

2y

=⇒
∫

2y dy =
∫

x2 − 1 dx

=⇒ y2 = 1
3 x3 − x + c.

Substituting (0, 0) gives c = 0. So, the equation
of the curve is 3y2 = x3 − 3x. The rhs is zero
at x = 0 and x = ±

√
3. Hence, the curve passes

through (±
√

3, 0), as well as the origin.

4127. The probability distribution for H is

h 0 1 2 3 4
P(H = h) 1

16
4

16
6

16
4

16
1

16

Since 1 + 6 + 1 = 4 + 4, P(even) = P(odd).

4128. (a) Consider the straight line L passing through
(x0, y0) and (x1, y1). We do not yet assume
that L passes through the other centres. Call
its x intercept P .

(x0, y0)

x

y

x1

L

P

The triangles formed by P and the vertical
radii of C0 and C1 are similar. The same is
true of the triangles formed by P and the ver-
tical radii of C1 and C2. Hence, the centre of
C2 must lie on L. The same is then true for
all of the centres.

(b) Let L have angle of inclination θ. Considering
the vertical displacement y0 − y1, 2

3 = 4
3 sin θ,

which gives θ = 30°. So, the x intercept of L

is
√

3. This is the required limit.

4129. By the product and quotient rules,

f ′(x) = tan x + x sec2 x,

f ′′(x) = 2 sec2 x(1 + x tan x).

The derivatives of g(x) = x2 are g′(x) = 2x and
g′′(x) = 2. Evaluating both at x = 0,

f(0) = 0 f ′(0) = 0 f ′′(0) = 2,
g(0) = 0 g′(0) = 0 g′′(0) = 2.

Since the values of the functions and their first and
second derivatives agree at x = 0, the function f(x)
may be approximated by g(x) for small x.

4130. (a) In the boundary cases, the edges coincide. By
symmetry, the first coincidence is the edges
parallel to y at x = 3. This occurs at t = 1.

x

y

Afterwards, the sides parallel to x coincide at
y = 2.5. This occurs at t = 1.5.

x

y

So, the squares overlap for t ∈ (1, 1.5).

Nota Bene

The boundary cases should be excluded here,
as an edge in common does not constitute area
in common.

(b) By symmetry, the maximal common area must
occur at the midpoint of the above interval, i.e.
at t = 1.25. At this point, the scenario is

x

y

At this point, the region in common is a square
of side length 1/2. Hence, the maximal area in
common is 1/4.

4131. Let u = ln |sin x| and dv
dx = sec2 x. Then two

(fairly) standard results yield du
dx = cot x and

v = tan x. The parts formula gives∫
sec2 x ln |sin x| dx

= tan x · ln |sin x| −
∫

cot x tan x dx

= tan x · ln |sin x| −
∫

1 dx

= tan x · ln |sin x| − x + c.
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4132. (a) Using the cosine compound-angle formula,
with x = a + b and y = a − b,

cos x + cos y

= cos(a + b) + cos(a − b)
≡ cos a cos b − sin a sin b

+ cos a cos b + sin a sin b

≡ 2 cos a cos b.

Solving the original definitions for a and b,

a = x + y

2 and b = x − y

2 .

Substituting these into the expression above,

cos x + cos y ≡ 2 cos
(

x + y

2

)
cos

(
x − y

2

)
.

(b) The superposition of two notes is their sum.
We can rewrite this using the sum-to-product
identity:

cos pt + cos qt

≡ 2 cos
(

p + q

2 t

)
cos

(
p − q

2 t

)
.

Since p and q differ only by a small amount,
the mean of p and q is close to each:

p + q

2 ≈ p, q.

But their halved difference is close to zero:
p − q

2 ≈ 0.

So, the factor cos p−q
2 represents a wave with a

much lower frequency than the original notes.
And it scales the outputs of the original note
cos p+q

2 , causing its volume to undulate slowly.
This is the phenomenon of a beat in tuning.

4133. The total shaded area is given by

lim
k→∞

∫ k

2
(x − 1)−2 dx

= lim
k→∞

[
− (x − 1)−1

]k

2

= lim
k→∞

1
1 − k

+ 1

= 1.

The derivative is −2(x−1)−3. At the marked point
(2, 1), the gradient is −2. So, the triangle below
the tangent line has height 1 and base 1/2: its area
is 1/4. Hence, the tangent line splits the shaded
area 1/4 : 3/4, which is 1 : 3, as required.

4134. Consider y = Un and y = Vn as continuous graphs
defined over R. Solving for intersections,

3n3 − n2 − 2n + 1 = 2n3 + n2

=⇒ n3 − 2n2 − 2n + 1 = 0
=⇒ n = −1, 1

2
(
3 ±

√
5
)
.

Since the leading coefficient of Un is greater than
that of Vn, the graph y = Un is above that of
y = Vn for large n.

n

y

3−
√

5
2

3+
√

5
2

The relevant surds, to 4dp, are

n = 3−
√

5
2 = 0.3820,

n = 3+
√

5
2 = 2.6180.

There are two integers in (0.3820, 2.6180).

4135. (a) True. Every cubic equation has a real root, so
every cubic has a linear factor. Dividing by
this linear factor leaves a quadratic factor.

(b) False. The quartic x4 + 1 is a counterexample:
it is irreducible over the reals.

(c) True. Every quintic equation has a real root,
so every quintic has a linear factor. Dividing
by this linear factor leaves a quartic factor.

4136. Substituting the latter into the former,

log10 x + 2 log10(2x − 3) = 1
=⇒ log10 x + log10(2x − 3)2 = 1
=⇒ log10 x(2x − 3)2 = 1
=⇒ x(2x − 3)2 = 10
=⇒ 4x3 − 12x2 + 9x − 10 = 0.

This has a root at x = 5/2. Taking out a factor of
(2x − 5), we have (2x − 5)(2x2 − x + 2) = 0. The
quadratic factor has ∆ = −15 < 0, so there is a
maximum of one (x, y) solution.
At x = 5/2, y = 2. These satisfy both equations.
Hence, the simultaneous equations have exactly
one (x, y) solution, as required.
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4137. By the product rule,

y = x3ex

=⇒ dy

dx
= 3x2ex + x3ex

=
(
3x2 + x3)

ex

=⇒ d2y

dx2 ≡
(
6x + 3x2)

ex + (3x2 + x3)ex

≡
(
6x + 6x2 + x3)

ex.

Setting the first derivative to zero,

3x2 + x3 = 0
=⇒ x = −3, 0.

(a) At x = −3, the second derivative is 9e−3 > 0,
so there is a local minimum at x = −3.

(b) At x = 0, the second derivative is 0. We need
to show that there is a sign change at x = 0.
Factorising, the second derivative is

d2y

dx2 = x
(
6 + 6x + x2)

ex.

The quadratic factor has a non-zero constant
term, so does not change sign at x = 0. The
exponential factor is always positive. Hence,
the single factor of x ensures a sign change in
the second derivative. So, there is a point of
inflection at x = 0, as required.

4138. Solving for intersections,

x(x + k) + x2 = 2
=⇒ 2x2 + kx − 2 = 0

=⇒ x = −k ±
√

k2 + 16
4 .

The difference between the two x values is

x2 − x1 =
√

k2 + 16
2 .

Since y = x + k has gradient 1, this gives |PQ| as
√

2 ×
√

k2 + 16
2 .

Equating this to the given value,
√

2 ×
√

k2 + 16
2 = 5

√
2

2
=⇒ k2 + 16 = 25
=⇒ k = ±3.

4139. Using the conditional probability formula,

P(n tails | at least n − 1 tails)

= P(n tails)
P(n − 1 or n tails)

=
( 1

2
)n

nC1
( 1

2
)n +

( 1
2
)n

≡ 1
n + 1 .

Alternative Method

The restricted possibility space consists of n + 1
outcomes: the n orders of htt...t and the only
order of tt...tt. Of these, the latter is successful.
So, the probability is 1/n+1.

4140. Over a common denominator, the function is

f(x) = x

(x − 1)2 .

This has a double asymptote at x = 1. So, as
x → 1±, y → +∞. The degree of the denominator
is greater than that of the numerator, so the x axis
is horizontal asymptote. For sps,

f ′(x) = (x − 1)2 − 2x(x − 1)
(x − 1)4 = 0

=⇒ x = ±1.

The function is undefined at x = 1, and has value
−1/4 at x = −1. This must be a minimum. On the
domain [−1, 1), therefore, the function achieves its
full range, which is [−1/4, ∞).

x

y

(−1, −1/4) 1

4141. (a) For sps, 3x2 − 3k = 0. There are three cases:
• k < 0: there are no sps,
• k = 0: there is one sp at (0, 2),
• k > 0: there are two sps, at(

− k
1
2 , 2k

3
2 + 2

)
and

(
k

1
2 , −2k

3
2 + 2

)
.

(b) We are told that the curve has one x intercept.
This is satisfied in the first two cases k ≤ 0. It
may also be satisfied in the third case, if the y

coordinate of the right-hand sp is greater than
zero. Solving −2k

3
2 + 2 > 0, we get k < 1. So,

k ∈ (−∞, 1).

4142. We are told that f(a) = f ′(a) = 0. So, x = a is a
root and a stationary point of f(x). Hence, x = a

is a repeated root. By the factor theorem, (x−a)2

is a factor of f(x).
The same is true of x = b.
And we are told that a ̸= b, so f(x) has a factor of
(x − a)2(x − b)2, which is quartic. Therefore, f(x)
must have degree at least four.
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4143. The sum of the interior angles is (n − 2)π. So, the
mean of the ap is n−2

n π.

Consider the largest possible common difference,
which corresponds to the angles being as distant
from the mean as possible. The n-gon is convex,
so all interior angles are in (0, π). Also, P has
at least 5 sides, so the mean angle n−2

n π is closer
to π than to 0. Hence, the (unattainable) upper
bound for the common difference occurs when the
greatest angle is π.

Assume the largest interior angle is π. Between
this and the mean, the difference is π − n−2

n π,
which simplifies to 2π

n . Since the angles form an
ap, the smallest and largest angles are equidistant
from the mean, so the smallest angle is n−2

n π − 2π
n ,

which simplifies to n−4
n π. Hence, all interior angles

must satisfy

θ >
n − 4

n
π.

4144. (a) The vertical asymptote is at x3 + ex = 0. This
is not analytically solvable. So, we use the
Newton-Raphson method. The iteration, with
the function f(x) = x3 + ex, is

xn+1 = xn − x3
n + exn

3x2
n + exn

.

Running this with x0 = 0, we get x1 = −1,
then xn → −0.77288... To determine the value
to 4sf, we test errors bounds:

f(−0.77295) = −0.00015... < 0,

f(−0.77285) = 0.000074... > 0.

The sign changes, so p ∈ (−0.77295, −0.77285).
Hence, p = −0.7729 (4sf).

(b) Differentiating by the quotient rule,

y = ex

x3 + ex

=⇒ dy

dx
= ex(x3 + ex) − ex(3x2 + ex)

(x3 + ex)2 .

For sps, the numerator is zero. Since ex > 0
for all x, we can divide through by it, leaving

x3 + ex − (3x2 + ex) = 0
=⇒ x3 − 3x2 = 0
=⇒ x2(x − 3) = 0.

Setting aside x = 0 (the point of inflection on
the y axis), the exact coordinates of A are(

3,
e3

27 + e3

)
.

4145. Using the result d
dx sec2 x = 2 sec2 x tan x, the

derivatives are as follows:

y = tan
(
x2)

=⇒ dy

dx
= 2x sec2(

x2)
=⇒ d2y

dx2 = 2 sec2(
x2)

+ 8x2 sec2(
x2)

tan
(
x2)

.

Consider the sign of the second derivative. Since
sec2(

x2)
is positive, we need only consider the sign

of tan
(
x2)

. On the domain (0, 1), the range of
tan

(
x2)

is the same as the range of tan x, which is

(0, tan 1 ≈ 1.56).

Hence, the second derivative is positive on (0, 1),
which means the function x 7→ tan

(
x2)

is convex.
So, any chord to y = tan

(
x2)

lies above the curve.
The trapezium rule will therefore overestimate the
value of the integral, irrespective of the number of
strips used.

4146. Solving for intersections, x = (2x2 − 1)2, which
gives x = 1 or x = 0.419643. So, there are points
of intersection at (1, 1) and (0.419643, −0.647799).
Consider the lhs as a function:

f(x, y) =
(
x + y − 4

5
)2 + 3

(
y − x + 1

2
)2

.

Testing the two points of intersection,

f(1, 1) = 2.19 < 3
f(0.419643, −0.647799) = 2.02 < 3.

Since both of these values are less than 3, both
points of intersection lie within the given ellipse.

x

y

(1, 1)

(0.420, −0.648)

4147. (a) i. With the load in equilibrium, the tension in
the cable is 200g. So, the force diagram on
the right-hand pulley (modelled as light) is

T = 200g

T = 200g
R
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The resultant of the tensions, i.e. the total
force exerted by the cable, has magnitude
200

√
2g ≈ 2772 N. This acts at 45° below

the horizontal, to the left. The force on the
other pulley is symmetrical, acting down
and to the right.

ii. Nii for the load gives T −200g = 200·0.1, so
T = 1980. Combining the forces on both
pulleys, the horizontal forces cancel. The
combined downwards force on the pulleys
is 1980 × 2 = 3960 N. Since the pulleys
are light, this is the same as the combined
downwards force on the hoist arm.

(b) The maximum tension in the cable is 10 kN.
In this boundary case, Nii for the load is

10000 − 800g = 800a

=⇒ a = 2.7

So, the maximum acceleration is 2.7 ms−2.
This is upwards. Downwards, any acceleration
is safe regarding the force on the hoist arm.

4148. Rotation by 180° about the origin is the same as
reflection in both x and y axes. So, we replace
x by −x and y by −y, giving the equation of the
transformed graph as f1(−x) f2(−y) = 1.

4149. The inequality describes the interior of an ellipse.
Its boundary equation is a2 + 3b2 = 10. Solving
for intersections with the parabola,

12 − b + 3b2 = 10
=⇒ 3b2 − b + 2 = 0.

This has ∆ = −23 < 0. So, the parabola does
not intersect the boundary ellipse. The parabola
must therefore lie outside the ellipse everywhere.
Hence, there are no points which simultaneously
satisfy the inequality and the equation.

4150. Differentiating the given curve twice,

y = x4 + x

=⇒ dy

dx
= 4x3 + 1

=⇒ d2y

dx2 = 12x2.

The second derivative is zero at x = 0, but the
root is a double root. So, the second derivative
has the same sign (positive) for x < 0 and x > 0.
Hence, the origin is not a point of inflection.

x

y

4151. (a) Substituting into the lhs,

(xy − 1)2 =
(
cosec t(sin t + cos t) − 1

)2 + 1
≡ cot2 t + 1
≡ cosec2 t

= x2.

(b) Setting dx
dt = 0, we get − cosec t cot t = 0. The

cosec function is never zero, so cot t = 0. The
relevant roots are t = ±π/2. Substituting these
values in, the points are at A : (−1, −1) and
B : (1, 1).

4152. Taking out a factor of 1/x4 from the right-hand
bracket, we have

(x − 1)4 (
1 + 1

x

)4

≡ 1
x4 (x − 1)4(x + 1)4

≡ 1
x4 (x2 − 1)4

≡ 1
x4 (x8 − 4x6 + 6x4 − 4x2 + 1)

≡ x4 − 4x2 + 6 − 4x−2 + x−4.

The constant term is 6.

4153. The tangent at x = a is y = 2ax−a2. At x = a−3,
it is y = 2(a − 3)x − (a − 3)2. Each of these passes
through (b, −2). So, we have equations

−2 = 2ab − a2,

−2 = 2(a − 3)b − (a − 3)2.

The former gives b = a2−2
2a . Substituting this into

the latter,

−2 = 2(a − 3) a2−2
2a − (a − 3)2

=⇒ −4a = 2(a − 3)(a2 − 2) − 2a(a2 − 6a + 9)
=⇒ a2 − 3a2 + 2 = 0
=⇒ a = 1, 2.

So, a = 1, b = −1/2 or a = 2, b = 1/2.

4154. The centres of the four spheres A, B, C, D and the
point from which the strings are suspended X form
a square based pyramid, in which all edges lengths
are 2r.

B

C

D

A

X

The four tensions act along edges AX, BX, CX,
DX. The angle of inclination of these edges, above
the face ABCD, is 45°. The forces on each sphere
are tension, weight, and two horizontal reaction
forces from the neighbouring spheres. The only
vertical forces are tension and weight. Resolving
vertically, T sin 45° − mg = 0, so T =

√
2mg.
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4155. Firstly, consider x2 + y2. This is

4(1 − cos t)2 cos2 t + 4(1 − cos t)2 sin2 t

≡ 4(1 − cos t)2(cos2 t + sin2 t)
≡ 4(1 − cos t)2.

Each term of the lhs of the Cartesian equation
contains a factor of 4(1 − cos t)2. The first term is

(x2 + y2)2 = 4(1 − cos t)2(4 − 8 cos t + 4 cos2 t).

The second term is

4x
(
x2 + y2)

= 4(1 − cos t)2(8 cos t − 8 cos2 t).

The third term is

−4y2 = 4(1 − cos t)2(−4 sin2 t).

Adding these together, the lhs is

4(1 − cos t)2(
4 − 4 cos2 t − 4 sin2 t)

≡ 4(1 − cos t)2(
4 − 4(cos2 t + sin2 t)

)
≡ 0, as required.

4156. Both the lhs and the rhs have even symmetry. So,
we need only show the result for non-negative x.
Since 1 + x2 is positive, we can multiply through,
while maintaining the direction of the inequality:

2x2

1 + x2 ≤ x

⇐⇒ 2x2 ≤ x + x3

⇐⇒ 0 ≤ x(x − 1)2.

For x ≥ 0, this last inequality holds. Symmetry
then gives the full result. The graphs of y = lhs
and y = rhs are shown below.

x

y

4157. The y axis is the line of symmetry of y = x2.
The angle between this and the line y =

√
3x is

90° − arctan
√

3, which is 30°. When reflected, the
image of the y axis is therefore 30° below the line
y =

√
3x. It is 30° above the x axis.

x

y

30°

At inclination 30°, the gradient is tan 30° = 1/
√

3.
So, the new line of symmetry is y = x√

3 .

4158. We know that dx
dt = x2. Separating the variables,

dx

dt
= x2

=⇒
∫

x−2 dx =
∫

1 dt

=⇒ −x−1 = t + c

=⇒ x = 1
−c − t

.

Substituting t = 0, x = 1, we get c = −1, so the
position is given by

x = 1
1 − t

.

This has an asymptote at t = 1, approaching which
the position x grows without bound. At this point,
and therefore for all t ≥ 1, the model breaks down.
It can only apply during the first second of motion.

4159. The third derivative of f is positive everywhere.
Hence, it must be a polynomial of even degree.
Integrating three times switches the parity three
times, so f must have odd degree. The range of
any polynomial of odd degree is R.

4160. Using the first Pythagorean trig identity,

sin3 x − 8 cos2 x + 21 sin x + 26 = 0
=⇒ sin3 x − 8(1 − sin2 x) + 21 sin x + 26 = 0
=⇒ sin3 x + 8 sin2 x + 21 sin x + 18 = 0.

This is a cubic in sin x. Let z = sin x, giving
z3 + 8z2 + 21z + 18 = 0. Factorising,

z3 + 8z2 + 21z + 18 = 0
=⇒ (z + 2)(z + 3)2 = 0
=⇒ z = −2, −3.

So, we have sin x = −2, −3. But the range of the
sine function is [−1, 1]. Hence, no x values satisfy
the original equation, as required.

4161. Differentiating with respect to x,

y = x3 + y3

=⇒ dy

dx
= 3x2 + 3y2 dy

dx

=⇒ dy

dx
= 3x2

1 − 3y2 .

At the three points in question, the x coordinate is
zero, so dy

dx = 0. Furthermore, as x passes through
0, there is no change of sign in the gradient, due
to the double factor of x in the numerator. Hence,
the three y axis intercepts are (stationary) points
of inflection.

Nota Bene
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At a stationary point, the following conditions
for a point of inflection are equivalent:

• the first derivative does not change sign,
• the second derivative is zero and changes sign,
• the second derivative is zero and the third

derivative is non-zero.
The first of these conditions does not carry through
to non-stationary points of inflection, but the other
two do.

4162. (a) X1 ∼ N
(
µ, σ2)

,

(b) X̄ ∼ N
(

µ, σ2

n

)
,

(c) X1 + X2 + ... + Xk ∼ N
(
kµ, kσ2)

,
(d) The distribution of aXi + b is N

(
aµ + b, a2σ2)

.
Then, using part (b),

1
n

n∑
i=1

(aXi + b) ∼ N
(

aµ + b, a2σ2

n

)
.

4163. Radius OP has gradient tan θ. So, tangent AB has
gradient − cot θ. Its equation is

y − sin θ = − cot θ(x − cos θ).

The axis intercepts are therefore A : (sec θ, 0) and
B : (0, cosec θ). The area of △OAB is

A△ = 1
2 sec θ cosec θ

≡ 1
2 cos θ sin θ

≡ 1
sin 2θ

≡ cosec 2θ, as required.

Alternative Method

Triangles OAP , OBP and OXP are all similar.

x

y

XO A

B
P : (cos θ, sin θ)

|OX| = cos θ and |XP | = sin θ. So, scaling up the
hypotenuse of OXP ,

|OA| = |OP | × |OP |
|OX|

= 1
cos θ

≡ sec θ.

By symmetry, |OB| = cosec θ. The rest of the
proof follows as in the first solution.

4164. There is a common factor of x on top and bottom.
Cancelling this, the integrand is

18x2 − 6
3x2 − 2x − 1 .

As a proper algebraic fraction, this is

6(3x2 − 2x − 1) + 12x

3x2 − 2x − 1

≡ 6 + 12x

3x2 − 2x − 1 .

The denominator factorises as (3x + 1)(x − 1).
Writing in partial fractions,

12x ≡ A(x − 1) + B(3x + 1).

Equating coefficients, A+3B = 12 and B −A = 0.
This gives A = B = 3. We can now integrate:∫ 18x3 − 6x

3x3 − 2x2 − x
dx

=
∫

6 + 3
3x + 1 + 3

x − 1 dx

= 6x + ln |3x + 1| + 3 ln |x − 1| + c.

Nota Bene

The relevant polynomial long division is

6
3x2 − 2x − 1

)
18x2 − 6

− 18x2 + 12x + 6
12x + 0

4165. The equation is

2
√

x + 1 −
√

2x + 1 = 0
=⇒ 2

√
x + 1 =

√
2x + 1

=⇒ 4x + 4
√

x + 1 = 2x + 1
=⇒ 2

√
x + x = 0

=⇒
√

x
(
2 +

√
x

)
= 0.

The range of
√

x is R+, so the latter factor has no
real roots. Hence, x = 0 is the only real root of
the equation.

4166. (a) We rearrange to the form

v = A + (B − A)e−kt.

In this form, it is clear that the velocity decays
towards v = A, from initial value v = B. The
velocity-time graph is

t

v

A

B
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(b) A is terminal velocity, B is initial velocity, and
k describes the rate at which the object slows
down. It is not acceleration, however, as seen
in the answer to (c).

(c) 0 < A < B, so this model doesn’t describe
objects falling from rest. It describes objects
projected downwards, with initial downward
speeds greater than their terminal velocities.

(d) B must also have units ms−1. The inputs into
the exponential function are numbers without
units, so kt should have no units. Hence, the
units of k are s−1.

(e) The displacement is given by the integral of
velocity:

s =
∫

A + (B − A)e−kt dt

= At − B − A

k
e−kt + c.

By definition, s = 0 at t = 0. Substituting in,

0 = −B − A

k
+ c

=⇒ c = B − A

k
.

Hence, the displacement is

s = At − B − A

k
e−kt + B − A

k

≡ At + B − A

k

(
1 − e−kt

)
, as required.

4167. The change of base formula is

loga b = logc b

logc a
.

Using this to convert to natural logs,

f(x) = ln x

ln a
− ln x

ln b

≡
(

1
ln a

− 1
ln b

)
ln x.

The ln function is increasing everywhere. So, since
1 < a < b, we know that 0 < ln a < ln b. Hence,

1
ln a

>
1

ln b
.

So, f(x) = k ln x, where k > 0, and is therefore an
increasing function.

4168. (a) The derivative of tan x is sec2 x. At x = 0, this
has value 1. The gradient of y = −x is −1, so
curve and line are normal at the origin.

(b) For intersections, x + tan x = 0. This is not
analytically solvable. A fixed-point iteration
(for the first positive intersection) is

xn+1 = arctan(−xn) + π.

Running this with x0 = 0.5, we get x ≈ 2.03.
Confirming with error bounds,

2.025 + tan(2.025) = −0.023... < 0,

2.035 + tan(2.035) = 0.037... > 0.

So, the first intersection lies in (2.025, 2.035).
Over this interval, the gradient takes values
between sec2(2.025) and sec2(2.035), which is
m ∈ (4.99, 5.19). Therefore, the curve and the
line are not normal to each other at the first
point of intersection. Hence, there must be a
shorter path between two successive branches
than the one lying along y = −x.

Nota Bene

The addition of π in the fixed-point iteration
is necessary because the graph y = arctan x

only contains (a reflection in y = x of) the
central branch of the graph y = tan x. Using
the iteration xn+1 = arctan(−xn) gives only
x = 0. The function x 7→ arctan(x) + π is
a non-standard inverse of the tan function, in
the same way that x 7→ −

√
x is a non-standard

inverse of the squaring function.

4169. (a) This is well defined. Since x ̸= 1, we can cancel
factors of (x − 1) from top and bottom. The
limit then has value 1.

(b) This is not well defined. The value depends
on the direction from which we approach 1.
First, cancel factors of (x + 1). Then consider
the approach from above, in which x − 1 > 0:

lim
x→1+

|x − 1|
x − 1 = lim

x→1+

x − 1
x − 1 = 1.

But approaching from below, x − 1 < 0:

lim
x→1−

|x − 1|
x − 1 = lim

x→1−

−(x − 1)
x − 1 = −1.

(c) This is not well defined, for the same reasons
as in (b). The extra modulus sign on |x+1| has
no impact: anywhere in the vicinity of x = 1,
x + 1 is positive, so the new mod sign has no
effect.

4170. Call the cubics f(x) and g(x), and consider the
equation f(x) − g(x) = 0. This is a polynomial
equation of degree at most three. We are told
that it has four distinct roots. But a polynomial
of degree n ≥ 1 can have at most n roots. So,
f(x) − g(x) = 0 must be a polynomial of degree
zero, with infinitely many roots, i.e. f(x) − g(x)
must be identically zero for all x ∈ R. This means
that y = f(x) and y = g(x) must be the same cubic
graph.

4171. (a) The cross-sections both have y intercept −32,
and roots at x = ±8. So, their depths are 32
m and their widths are 16 m.
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(b) At A, the x coordinates of the edges of the
water are given by 1

2 x2 − 32 = −3.27, so that
x = ±7.58. The cross-sectional area is∫ 7.58

−7.58
−3.27 −

( 1
2 x2 − 32

)
dx = 290.374.

We perform the same calculation at B, calling
the x coordinates of the edges of the water ±k.
The cross-sectional area is∫ k

−k

1
128 k4 − 32 −

( 1
128 x4 − 32

)
dx

≡
[

k4

128 x − 1
640 x5

]k

−k

≡ 1
80 k5.

Setting this equal to the result at A,

1
80 k5 = 290.374

=⇒ k = 7.4681.

Substituting back in, the depth of the surface
at B is 7.70 metres (3sf) below ground level.

4172. Writing the function in harmonic form,

sin x +
√

3 cos x ≡ R sin(x + α)
≡ R sin x cos α + R sin α cos x.

Equating coefficients, R cos α = 1, R sin α =
√

3.
So, R = 2 and α = arctan

√
3 = π

3 . This gives

f(x) = 2 sin
(
x + π

3
)
.

This is a stretched and translated sine wave. The
largest interval containing zero over which it is one-
to-one and therefore invertible is shown below:

x

y

(− 5π
6 , −2

)

(
π
6 , 2

)

The interval is
[
− 5π

6 , π
6

]
.

4173. This is a cubic in ex. Taking out a factor of ex,

e3x − e2x + 5ex > 0
⇐⇒ ex(e2x − ex + 5) > 0.

Since ex > 0, this is true iff the second factor is
positive. And (e2x −ex +5) is a positive quadratic
in ex with discriminant ∆ = −19 < 0, so it is also
positive for all x. Hence, all real x values satisfy
the inequality: the set in question is R.

4174. By Pythagoras, x2+y2 = r2. Also (noting reversal
of sin and cos due to an angle with the y axis),

x = r sin θ,

y = r cos θ.

Substituting these in,

r = 2(sec θ − cos θ)

=⇒ r = 2
(

r
y − y

r

)
=⇒ r2y = 2

(
r2 − y2)

=⇒
(
x2 + y2)

y = 2
(
x2 + y2 − y2)

=⇒
(
x2 + y2)

y = 2x2, as required.

4175. (a) P(H < 1) = 0.309 (3dp).
(b) We need k such that

P(µ − k < H < µ + k) = 0.9.

h1.1 1.1 + k1.1 − k

Each unshaded tail has probability 0.05. So,
using a standard normal Z ∼ N(0, 1), the z

value is 1.645. Hence,

(1.1 + k) − 1.1
0.2 = 1.645 =⇒ k = 0.329.

The required bounds are a, b = 1.1 ± 0.329.
The interval is (0.771, 1.429) metres, to 3dp.

4176. Firstly, consider x > 0. By definition, x ≡ eln x.
Differentiating this,

x ≡ eln x

=⇒ 1 ≡ eln x · d
dx (ln x)

=⇒ 1 ≡ x · d
dx (ln x)

=⇒ d
dx (ln x) ≡ 1

x .

This proves the integral result for x > 0:∫ 1
x

dx = ln x + c.

Secondly, consider x < 0. This time, x ≡ −eln(−x).
Proceeding as before,

x ≡ −eln(−x)

=⇒ 1 ≡ −eln(−x) · d
dx

(
ln(−x)

)
=⇒ 1 ≡ x · d

dx

(
ln(−x)

)
=⇒ d

dx

(
ln(−x)

)
≡ 1

x .

This proves the integral result for x < 0:∫ 1
x

dx = ln(−x) + c.
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The two results can be expressed together, using
a modulus function:∫ 1

x
dx = ln |x| + c, as required.

4177. (a) This is a positive sextic with a single root at
x = a, a double root at x = b and a triple root
at x = c:

x

y

a b c

(b) The graph has double roots at x = a and
x = c, and a double asymptote at x = b. In its
behaviour for large x, it is close to parabolic:

x

y

a b c

4178. (a) We only have information about the second
derivative. To analyse the first derivative, we
would need to integrate. This would introduce
an unknown constant of integration.

(b) The function g is convex when its second
derivative is positive. Since the graph shown
is positive for all x values other than −2, the
original curve y = g(x) is convex on R \ {−2}.

(c) The second derivative is zero at x = −2, but
does not change sign: g is convex both sides of
x = −2. So, x = −2 is not a point of inflection.

4179. Consider the following configuration of five unit
squares, enclosed by a larger square:

The length of the diagonal is 2
√

2 + 1. Dividing
this by

√
2 gives the side length of the enclosing

square as 2 +
√

2/2, which proves the result.

4180. Differentiating implicitly,

x2y3 − 2x = 3y

=⇒ 2xy3 + 3x2y2 dy

dx
− 2 = 3 dy

dx
.

Setting dy

dx
= 0 for stationary points,

2xy3 − 2 = 0

=⇒ y = x− 1
3 .

Substituting this into the original relation,

x − 2x = 3x− 1
3

=⇒ x
4
3 = −3.

Since x
4
3 ≥ 0, this has no real roots. Hence, y is

never stationary with respect to x, as required.

4181. (a) The boundary equation is

a + b = 2
√

ab

=⇒ (a + b)2 = 4ab

=⇒ a2 + 2ab + b2 = 4ab

=⇒ a2 − 2ab + b2 = 0
=⇒ (a − b)2 = 0
=⇒ a = b.

(b) We can follow the above argument in reverse,
starting with the known fact that any square
is non-negative:

(a − b)2 ≥ 0
=⇒ a2 − 2ab + b2 ≥ 0
=⇒ a2 + 2ab + b2 ≥ 4ab

=⇒ (a + b)2 ≥ 4ab.

Since a, b ≥ 0, we can take the square root,
which yields the am-gm inequality:

a + b

2 ≥ 2
√

ab.

Quod erat demonstrandum.

4182. (a) With k = 1, the derivative is

f ′(x) = − sin x + tan x sec x.

Setting this to zero for sps,

− sin x + tan x sec x = 0
=⇒ − sin x cos2 x + sin x = 0
=⇒ sin x(cos2 x − 1) = 0
=⇒ sin x = 0 or cos2 x = ±1.

Over the domain [0, π/2), this gives only x = 0,
which is at the boundary. The derivative is
non-negative over [0, π/2). So, the function is
one-to-one over this domain, and is invertible.
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(b) With k = 1
2 , the derivative is

f ′(x) = − sin x + 1
2 tan x sec x.

Setting this to zero for sps,

− sin x + 1
2 tan x sec x = 0

=⇒ − sin x cos2 x + 1
2 sin x = 0

=⇒ sin x
(
cos2 x − 1

2
)

= 0.

This has another sp at x = π/4. Analysing the
values of the function at the boundaries of the
domain and at the sp:

x 0 π/4 → π/2

f(x) 2
√

2 → ∞.

Since
√

2 < 2, the function is not one-to-one
over the domain, and so is not invertible.

4183. For tangents parallel to y,

dx

dt
= 3t2 − 3 = 0

=⇒ t = ±1.

This gives points A, B : (±2, 1). To find P and Q,
we set x = 2 and solve:

t3 − 3t + 2 = 0
=⇒ (t − 1)2(t + 2) = 0
=⇒ t = 1, −2.

At t = −2, the coordinates are (2, 4). This is P .
By symmetry, Q is (−2, 4). Quadrilateral ABQP

has width 4 and height 3, so its area is 12.

4184. (a) The force diagram for the stuntman is

T2T1

mg

Horizontal equilibrium requires

T2 cos 15° − T1 cos 10° = 0.

So, T2 ̸= T1. The tensions differ in the two
sections of wire, so the stuntman is exerting
a frictional force on the wire, and vice versa.
Hence, the contact cannot be smooth.

(b) i. The wire is not symmetrical horizontally,
so the perpendicular reaction force exerted
cannot be vertical. Hence, it cannot have
magnitude mg.

ii. The sections of wire are nearly symmetrical
horizontally, so reaction is nearly vertical.
Its magnitude, therefore, is R ≈ mg.

(c) The resultant of the tensions must be directed
vertically upwards, with magnitude mg N.

Nota Bene

The resultant force in part (c) is a combination
of reaction and frictional components. While the
reaction is not quite vertical, the friction is not
quite horizontal. In combination, they add to mg

to counteract the weight of the stuntman.

4185. There is a common factor of (x + 2)3. This gives
a root at x = −2. What remains is quartic:

(x − 2)4 + x4 = 0.

Both terms are fourth powers, so non-negative.
Hence, their sum can only be equal to zero if both
are equal to zero. But this is only true if x = 0
and x = 2 simultaneously, which is not possible.
The original equation, therefore, has exactly one
real root x = −2.

Alternative Method

There is a common factor of (x + 2)3. This gives
a root at x = −2. What remains is quartic:

(x − 2)4 + x4 = 0
=⇒ 2x4 − 8x3 + 24x2 − 32x + 16 = 0
=⇒ x4 − 4x3 + 12x2 − 16x + 8 = 0.

We need to show this has no real roots. Looking
for stationary values of the quartic,

4x3 − 12x2 + 24x − 16 = 0
=⇒ 4(x − 1)(x2 − 2x + 4) = 0.

The quadratic has ∆ = −12 < 0, so no real roots.
Hence, the quartic has one sp, at x = 1. It is a
positive quartic, so this must be a local and global
minimum. Evaluating,

x4 − 4x3 + 12x2 − 16x + 8
∣∣∣
x=1

= 1.

Since this is positive, the quartic must be positive
everywhere. Hence, the original equation has one
real root, at x = −2.

4186. We need to find

y =
∫

ex + 1
ex + 2 dx.

Let u = ex + 2, so that du = ex dx. This gives

dx = du

u − 2 .

Enacting the substitution,

y =
∫

u − 1
u(u − 2) du.

Writing the integrand in partial fractions,

y = 1
2

∫ 1
u

+ 1
u − 2 du

= 1
2
(
ln |u| + ln |u − 2|

)
+ c

= 1
2
(
ln(ex + 2) + ln(ex)

)
+ c

≡ 1
2
(
ln(ex + 2) + x

)
+ c.
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4187. Factorising the lhs,

x2y + xy2 ≡ xy(x + y).

Consider a point (x, y) in the third quadrant, with
x, y < 0. In this quadrant, xy is positive and x+y

is negative. So, x2y + xy2 is negative and cannot
be equal to 1. But the graph shown has points in
the third quadrant.
The correct graph for x2y + xy2 = 1 is

x

y

4188. (a) The second derivative is 4e2x, which is equal
to 4y. So, y = e2x is a solution.

(b) By the product rule,

y = f(x)e2x

=⇒ dy

dx
=

(
f ′(x) + 2 f(x)

)
e2x

=⇒ d2y

dx2 =
(
f ′′(x) + 4 f ′(x) + 4 f(x)

)
e2x.

Substituting this into the de,(
f ′′(x) + 4 f ′(x) + 4 f(x)

)
e2x = 4 f(x)e2x

=⇒
(
f ′′(x) + 4 f ′(x)

)
e2x = 0.

The exponential factor cannot be zero, so

f ′′(x) + 4 f ′(x) = 0.

Integrating this with respect to x,

f ′(x) + 4 f(x) = k, as required.

(c) Writing z = f(x),
dz

dx
+ 4z = k

=⇒ dz

dx
= k − 4z.

Separating the variables and integrating,∫ 1
k − 4z

dz =
∫

1 dx

=⇒ − 1
4 ln |k − 4z| = x + c.

Rearranging and renaming constants,

ln |k − 4z| = −4x + d

∴ k − 4z = Ce−4x

=⇒ z = − 1
4 k − 1

4 Ce−4x.

Renaming the constants again, this is

f(x) = A + Be−4x.

(d) Substituting the above back into the original
proposed solution,

y = f(x)e2x

=
(
A + Be−4x

)
e2x

≡ Ae2x + Be−2x, as required.

4189. The implication goes forwards. If f ′(x) has a factor
of (x − 1)2, then

f ′(x) = (x − 1)2 g(x)
=⇒ f ′′(x) = 2(x − 1) + (x − 1)2 g′(x).

The converse doesn’t hold. As a counterexample,

f ′(x) = (x − 1)2 + 1
=⇒ f ′′(x) = 2(x − 1).

The latter has a factor of (x − 1), but the former
doesn’t have a factor of (x − 1)2.

4190. Consider triangles AXD and BXC:

A

B

D

C

X

By the same segment theorem, ∠ADX = ∠XBC

and ∠DAX = ∠XCB. Also ∠AXD and ∠BXC

are opposite and therefore equal. Hence, triangles
AXD and BXC are similar. So,

|AX|
|DX|

= |CX|
|BX|

.

Rearranging this gives

|AX||BX| = |CX||DX|, as required.

4191. Separating the variables,∫
x−2 dx =

∫
t−1 dt

=⇒ −x−1 = ln t + c.

Substituting t = 1 and x = 5 gives c = − 1
5 .

Putting this back in for the particular solution,

x−1 = 1
5 − ln t

=⇒ x = 1
1
5 − ln t

≡ 5
1 − 5 ln t

.
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4192. (a) The graphs are

x

y

(
− π

2 , −1
)
(
−1, − π

2
)

(
π
2 , 1

)
(
1, π

2
)

(b) We are looking for the gradient of y = arcsin x

at the point (sin x, x). Its reflection in y = x is
(x, sin x). At this point, quoting the standard
derivative, the gradient of y = sin x is cos x.
Reflecting back to y = arcsin x, gradients are
reciprocating by the switching of x and y. This
gives

f ′(sin x) = 1
cos x

, as required.

(c) Since cos x is positive over the domain of the
arcsin function, we can take the positive square
root in sin2 x + cos2 x = 1, replacing cos x by√

1 − sin2 x. This gives

f ′(sin x) = 1√
1 − sin2 x

.

Renaming sin x as x, the above statement is

f ′(x) = 1√
1 − x2

, as required.

4193. The restricted possibility space is as follows, with
classification by (unordered) set of values.

Values Total Successful
(1, 5, 6) 3! 0
(2, 4, 6) 3! 2
(2, 5, 5) 3 0
(3, 3, 6) 3 0
(3, 4, 5) 3! 2
(4, 4, 4) 1 1

There are 25 outcomes. Of these, 5 are successful.
This gives P(X + Z = 2Y | X + Y + Z = 12) = 1

5 ,
as required.

4194. The roots of x sin x = 0 are at integer multiples
of π. The nth region is formed over the interval
[(n − 1)π, pi]. Its area (with a mod sign to deal
with the negative signed areas) is

An =
∣∣∣∣∣
∫ nπ

(n−1)π

x sin x dx

∣∣∣∣∣ .

We integrate by parts. Let u = x and dv
dx = sin x.

So, du
dx = 1 and v = − cos x. This gives

An =
∣∣∣∣∣[−x cos x

]nπ

(n−1)π
+

∫ nπ

(n−1)π

cos x dx

∣∣∣∣∣
=

∣∣∣∣[−x cos x + sin x
]nπ

(n−1)π

∣∣∣∣
=

∣∣(±nπ
)

−
(
∓(n − 1)π

)∣∣
= |±(2n − 1)π|
= (2n − 1)π.

This is an arithmetic progression, with first term
A1 = π and common difference 2π.

4195. Let the equation of the cubic be y = f(x) and the
equation of the line be y = g(x). Call the point of
inflection x = α.

Consider the equation for intersections, which is
f(x) − g(x) = 0. This is a cubic equation, with a
root at x = α.

Consider the multiplicity of this root. A tangent
at a point of inflection crosses the curve. Hence,
x = α must be a triple root of f(x) − g(x) = 0.
Since the equation is cubic, this leaves no other
roots. Hence, the tangent does not intersect the
curve again.

4196. (a) i. The squared magnitudes are

|a|2 = |b|2 = sec2 ϕ + tan2 ϕ

≡ 1 + sin2 ϕ

cos2 ϕ
.

ii. The difference is

a − b = (sec ϕ − tan ϕ)i + (tan ϕ − sec ϕ)j
≡ (sec ϕ − tan ϕ)(i − j).

The squared magnitude of (i − j) is 2. So,

|a − b|2 = 2(sec ϕ − tan ϕ)2

≡ 2
(

1 − sin ϕ

cos ϕ

)2

≡ 2(1 − sin ϕ)2

cos2 ϕ
.

(b) The expressions in part (a) are the lengths of
three sides of the triangle formed by vectors a
and b:

b

a
a − b

θ



w
w

w
.g

il
es

ha
yt

er
.c

om
/f

iv
et

ho
us

an
dq

ue
st

io
ns

.a
sp

fe
ed

ba
ck

:
gi

le
s.

ha
yt

er
@

w
es

tm
in

st
er

.o
rg

.u
k

v1
w

w
w

.gileshayter.com
/fivethousandquestions.asp

feedback:
giles.hayter@

w
estm

inster.org.uk

v1

Using the cosine rule, and |a| = |b|,

cos θ = |a|2 + |b|2 − |a − b|2

2|a||b|

= 2|a|2 − |a − b|2

2|a|2

=
2 1+sin2 ϕ

cos2 ϕ − 2 (1−sin ϕ)2

cos2 ϕ

2 1+sin2 ϕ
cos2 ϕ

.

Multiplying top and bottom by 1
2 sec2 θ, this is

1 + sin2 ϕ − (1 − 2 sin ϕ + sin2 ϕ)
1 + sin2 ϕ

≡ 2 sin ϕ

1 + sin2 ϕ
, as required.

4197. In harmonic form, f(θ) = R sin(θ + α). The value
of R is the Pythagorean sum of 6 and 8, which is
10. We don’t need to find α: the possibility space
is the interval [0, 2π), and, irrespective of the value
of α, this interval is exactly one period. So, we can
use g(θ) = 10 sin θ wlog. Consider θ ∈ [0, 2π) as
the possibility space.

(a) Graphing y = 10 sin θ and y = 5:

θ

y

π
6

5π
6

The successful interval is (π/6, 5π/6), which has
length 2π/3. This gives

P
(
f(θ) > 5

)
=

2π
3

2π
= 1

3 .

(b) Graphing y = |10 sin θ| and y = 5:

θ

y

π
6

5π
6

7π
6

11π
6

There are two successful intervals, each as long
as that in part (a). So,

P
(
|f(θ)| > 5

)
=

4π
3

2π
= 2

3 .

4198. The quadratic formula gives

x1, x2 = −p ±
√

p2 − 4q

2 ,

x3, x4 = p ±
√

p2 − 4q

2 .

Adding the two roots of each equation, the square
roots cancel, leaving

x1 + x2 = −p,

x3 + x4 = p.

Hence, x1 +x2 +x3 +x4 = −p+p = 0, as required.

Alternative Method

Consider the graph y = x2 + px + q. Reflecting
this in the y axis gives

y = (−x)2 + p(−x) + q

=⇒ y = x2 − px + q.

This shows that the parabolae x2 +px+q = 0 and
x2 − px + q = 0 are reflections of one another in
x = 0. By symmetry, therefore, the sum of the
four roots is zero, as required.

4199. (a) The coordinates of the midpoint of the door
are

( 1
2 cos θ, 1

2 sin θ
)
. So, by Pythagoras,

l2 =
( 1

2 cos θ
)2 +

( 1
2 − 1

2 sin θ
)2

≡ 1
4 cos2 θ + 1

4 − 1
2 sin θ + 1

4 sin2 θ

≡ 1
2 (1 − sin θ).

So, sin θ = 1 − 2l2, as required.

(b) Differentiating implicitly,

cos θ
dθ

dt
= −4l

dl

dt
.

The winch retracts the cable at constant speed
u, so dl

dt = −u. This gives

cos θ
dθ

dt
= 4lu

=⇒ dθ

dt
= 4lu

cos θ

= 4lu√
1 − sin2 θ

.

Substituting sin2 θ =
(
1 − 2l2)2,

dθ

dt
= 4lu√

1 − (1 − 4l2 + 4l4)

≡ 4lu√
4l2 − 4l4

≡ 2u√
1 − l2

, as required.

(c) The speed of opening is maximised when the
denominator is minimised, which occurs at the
maximum possible length l. So, the greatest
angular speed of opening occurs initially.
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4200. The constant of integration has appeared too late.
It should appear at the moment the last integral
has been enacted:∫

ey dy =
∫

2x + 1 dy

=⇒ ey = x2 + x + c

=⇒ y = ln(x2 + x + c).

End of 42nd Hundred


